During the power crisis in New Zealand this winter (caused by a shortage of rain and hence low levels in the hydro dams), a contingency scheme was developed to turn off the power to areas of the country in a systematic, totally fair, manner. The country was divided up into N regions (Auckland was region number 1, and Wellington number 13). A number, m, would be picked `at random', and the power would first be turned off in region 1 (clearly the fairest starting point) and then in every m'th region after that, wrapping around to 1 after N, and ignoring regions already turned off. For example, if N = 17 and m = 5, power would be turned off to the regions in the order:1,6,11,16,5,12,2,9,17,10,4,15,14,3,8,13,7.
The problem is that it is clearly fairest to turn off Wellington last (after all, that is where the Electricity headquarters are), so for a given N, the `random' number m needs to be carefully chosen so that region 13 is the last region selected.
Write a program that will read in the number of regions and then determine the smallest number m that will ensure that Wellington (region 13) can function while the rest of the country is blacked out.
Input and Output
Input will consist of a series of lines, each line containing the number of regions (N) with . The file will be terminated by a line consisting of a single 0.
Output will consist of a series of lines, one for each line of the input. Each line will consist of the number m according to the above scheme.
Sample input
17 0
Sample output
7
출처: https://uva.onlinejudge.org/
1부터 N까지의 지역이 있다고 할 때 정전이 되는 순서가 1, 1+m, 1+m+m ....이라고 할 때 13번 지역이 마지막 순서가 될 수 있는 m을 구하는 문제입니다. 마지막 N 다음 순서는 1으로 순환되며, 이미 정전이 된 지역은 순서를 샐 때 제외하는 규칙입니다.
이 문제는 요세푸스(Josephus) 문제와 비슷한 문제라 생각됩니다. 풀이는 queue 를 이용해 선택된 지역을 꺼내고 다음 선택지가 나올 때 까지 꺼낸 후 뒤로 다시 집어 넣는 방법을 사용했습니다.
my solving
c++
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | #include<iostream> #include <queue> using namespace std; int last = 13; int CalcByQueue(int N) { for (int m = 1; m <= N; m++) { queue<int> survivors; for (int j = 1; j <= N; j++) survivors.push(j); while (survivors.size() > 1) { survivors.pop(); for (int i = 0; i < m - 1; i++) { survivors.push(survivors.front()); survivors.pop(); } } if (survivors.front() == last) { return m; } } return 0; } int main() { int N; while (true) { cin >> N; if (N == 0) break; cout << CalcByQueue(N) << endl; } return 0; } | cs |
'Algorithm, Data structure > Solved Algorithmic Problem' 카테고리의 다른 글
USACO 1.1 - Greedy Gift Givers (0) | 2016.05.29 |
---|---|
Project Euler #26 - Reciprocal cycles (0) | 2016.05.28 |
USACO 1.1 - Your Ride Is Here (0) | 2016.05.27 |
UVa - Ecological Bin Packing (0) | 2016.05.27 |
UVa -Train Swapping (0) | 2016.05.25 |